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Abstract

Simulated Annealing (SA) procedures can potentially yield near-optimal so-
lutions to many difficult combinatorial optimization problems, though often at
the expense of intensive computational efforts. The single most significant source
of inefficiency in SA search is the inherent stochasticity of the procedure, typ-
ically requiring that the procedure be rerun a large number of times before a
near-optimal solution is found. This paper describes a mechanism that attempts
to learn the structure of the search space over multiple SA runs on a given prob-
lem. Specifically, probability distributions are dynamically updated over multiple
runs to estimate at different checkpoints how promising a SA run appears to be.
Based on this mechanism, two types of criteria are developed that aim at increas-
ing search efficiency: (1) a cutoff criterion used to determine when to abandon
unpromising runs and (2) restart criteria used to determine whether to start a
fresh SA run or restart search in the middle of an earlier run. Experimental re-
sults obtained on a class of complex job shop scheduling problems show (1) that
SA can produce high quality solutions for this class of problems, if run a large
number of times, and (2) that our learning mechanism can significantly reduce
the computation time required to find high quality solutions to these problems.
The results further indicate that, the closer one wants to be to the optimum, the
larger the speedups.
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1 Introduction

Simulated Annealing (SA) is a general-purpose search procedure that generalizes iter-

ative improvement approaches to combinatorial optimization by sometimes accepting

transitions to lower quality solutions to avoid getting trapped in local minima [8, 1]. SA

procedures have been successfully applied to a variety of combinatorial optimization

problems, including Traveling Salesman Problems [1], Graph Partitioning Problems

[6], Graph Coloring Problems [7], Vehicle Routing Problems [14], Design of Integrated

Circuits, Minimum Makespan Scheduling Problems [9, 13, 19] as well as other com-

plex scheduling problems [23], often producing near-optimal solutions, though at the

expense of intensive computational efforts.

The single most significant source of inefficiency in SA search is the inherent stochas-

ticity of the procedure, typically requiring that the procedure be rerun a large number

of times before a near-optimal solution is found. Glover et al. developed a set of

"Tabu" mechanisms that attempt to increase the efficiency of SA and other neighbor-

hood search procedures by maintaining a selective history of search states encountered

earlier during the same run [4]. This history is then used to dynamically derive "tabu

restrictions" or "aspirations", that guide search, preventing it, for instance, from revis-

iting areas of the search space it just explored. This paper describes a complementary

mechanism that attempts to learn the structure of the search space over multiple runs

of SA on a given problem. Specifically, we introduce a mechanism that attempts to

predict how (un)promising a SA run is likely to be, based on probability distributions

that are refined ("learned") over multiple runs. The distributions, which are built at

different checkpoints, each corresponding to a different value of the temperature pa-

rameter used in the procedure, approximate the cost reductions that one can expect if

the SA run is continued below these temperatures. Two types of criteria are developed

that aim at increasing search efficiency by exploiting these distributions:

* A Cutoff Criterion: This criterion is used to detect runs that are unlikely to

result in an improvement of the best solution found so far and, hence, should be

abandoned;

* Restart Criteria: When completing a run or abandoning an unpromising one,
these criteria help determine whether to start a fresh SA run or restart search in

the middle of an earlier promising run.
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The techniques presented in this paper have been applied to a class of complex

job shop scheduling problems first described in [18]. Problems in this class require

scheduling a set of jobs that each need to be completed by a possibly different due

date. The objective is to minimize the sum of tardiness and inventory costs incurred

by all the jobs. This class of problems is known to be NP-complete and is representa-

tive of a large number of actual scheduling problems, including Just-In-Time factory

scheduling problems [18, 17]. Experimental results indicate (1) that SA can produce

high quality solutions for this class of problems, if run a large number of times, and

(2) that our learning mechanism can yield significant reductions in computation time.

The results further indicate that, the closer one wants to be to the optimum, the larger

the speedups.

The balance of this paper is organized as follows. Section 2 quickly reviews fun-

damentals of SA search. Section 3 analyzes the behavior of typical SA runs and

introduces a mechanism that aims at learning to recognize (un)promising runs on a

given problem, using the concept of Expected Cost Improvement Distributions (ECID).

In Section 4, we use ECID distributions to develop a cutoff criterion to determine

when to abandon unpromising runs. Section 5 presents three restart criteria based

ECID distributions. Experiments obtained on a set of benchmark job shop scheduling

problems with tardiness and inventory costs are reported in Section 6. A summary is

provided in Section 7.

2 Simulated Annealing Search

Figure 1 outlines the main steps of a SA procedure designed to find a solution x E S
that minimizes a real-valued function, cost(x). The procedure starts from an initial

solution x0 (randomly drawn from S) and iteratively moves to other neighboring so-

lutions, as determined by a neighborhood function, neighbor(x), while remembering

the best solution found so far (denoted by s). Typically, the procedure only moves to

neighboring solutions that are better than the current one. However, the probability

of moving from a solution x to an inferior solution x' is greater than zero, thereby al-

lowing the procedure to escape from local minima. rand() is a function that randomly

draws a number from a uniform distribution on the interval [0, 1]. The so-called tem-

perature, T, of the procedure is a parameter controlling the probability of accepting

a transition to a lower quality solution. It is initially set at a high value, To, thereby
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frequently allowing such transitions. If, after N iterations, the best solution found by

the procedure has not improved, the temperature parameter T is decremented by a

factor a (0 < a < 1). One motivation for progressively lowering the temperature is

to obtain convergence. Additionally, as the procedure slowly moves towards globally

better solutions, accepting transitions to lower quality solutions becomes increasingly

less attractive. When the temperature drops below a preset level T1, the procedure

stops and s is returned (not shown in Figure 1).

T = To; x = xo (E S); min = co;
while (T >T) {

fori=l,N {
x/ = neighbor(x);
if (cost(x') < cost(x)) x = X';
else if (rand() < exp{(cost(x) - cost(x'))/T}) x = x';
if(cost(x) < min) min = cost(x), s = x;

if (Min was not modified in the above loop) T = T * a;

Fig. 1 Basic Simulated Annealing Procedure.

Fig. 2 depicts the cost distribution of the best solutions returned by 300 SA runs on
a typical combinatorial optimization problem - a job shop scheduling problem from a
set of benchmarks to be described in Section 6.

Frequency

30-

20-

10-

cost
10000 15000 20000 25000 30000

Fig. 2 Cost Distribution of the Best Solutions Found by 300 SA Runs.

The optimal solution for this problem is believed to have a cost around 11, 500 -
the value in itself is of no importance here. Figure 2 indicates that, if run a large
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number of times, SA is likely to eventually find an optimal solution to this problem.
It also shows that, in many runs, SA gets trapped in local minima with costs much
higher than the global minimum. For instance, 60% of the runs produce solutions
with a cost at least 30% above the global minimum. This suggests that, if rather than
completing all these unsuccessful runs, one could somehow predict when a run is likely
to lead to a highly sub-optimal solution and abandon it, the efficiency of SA could be
greatly enhanced. The following section further analyzes the behavior of typical SA
runs and proposes a mechanism which, given a problem, aims at learning to recognize
(un)promising SA runs.

3 Learning To Recognize (Un)promising SA Runs

Figure 3 depicts the behavior of a SA procedure on two different scheduling problems
(from the set of benchmarks used in Section 6). For each problem, the figure depicts
five SA runs, plotting the cost of the best solution, s, as the temperature of the pro-
cedure is progressively lowered - temperatures are shown in log scale, which is almost
equivalent to computation time in linear scale. SA behaves very differently on these
two problems. For instance, in Problem #1, the range of final solutions is relatively
narrow, while in Problem #2 it is much wider. Another differentiating factor is the
behavior of the procedure at low temperatures. It seems that for Problem #1, the
quality of a run can already be estimated quite accurately at T = 50 (e.g. the best run
at T = 50 remains best at lower temperatures), while this is less so for Problem #2.

Cost Cost

30000 30000

250000 250000

20000 200007800

15000- 150001
.Temp. Temp.

200 100 50 25 12.5 6.25 200 100 50 25 12.5 6.25
(a) Problem 1 (b) Problem 2

Fig. 3 Cost reductions in five SA runs on two different problems.

Clearly, such properties are not intrinsic to a problem itself. They could change if
a different neighborhood structure or a different cooling profile was selected, as these
parameters can affect the types of local optima encountered by the procedure and the
chance that the procedure extricates itself from these local optima below a given tem-
perature. While, in general, it may be impossible to find a SA procedure that reliably
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converges to near-optimal solutions on a wide class of problems, we can try to design
adaptive SA procedures which, given a problem, can learn to recognize (un)promising
runs and improve their performance over time. Below, we present a mechanism, which,
given a problem, attempts to "learn" at different checkpoint temperatures the distri-
bution of cost improvements that one can hope to achieve by continuing search below
these temperatures.

Specifically, we postulate that, given a problem and a checkpoint temperature T = t,
the distribution of the cost improvement that is likely to be achieved by continuing a
run below t can be approximated by a normal distribution. Using performance data
gathered over earlier runs on a same problem, it is possible to approximate these Ex-
pected Cost Improvement Distributions (ECID) for a set C of checkpoint temperatures
and use these distributions to identify (un)promising runs.

Formally, given a combinatorial optimization problem and a SA procedure for that
problem, we define cý as the cost of the best solution, s, at check point t in the i-th
run and c? as the cost of the best solution obtained at temperature T = T1 in the i-th
execution. When the (n + 1)-st run reaches a checkpoint temperature t, the ECID
below t is approximated as a normal distribution N[y', o-] , whose average, y', andt
standard deviation, 0n, are given by:

n 1(Ci= C0) - })

n n-

By incrementally refining these estimators over multiple runs, this mechanism can in
essence "learn" to recognize (un)promising SA runs. The following sections successively
describe a cutoff criterion and three restart criteria based on ECID distributions.

4 A Cutoff Criterion

Suppose that, in a sixth run on Problem #1, the best solution obtained at checkpoint
T = 100 is solution A - Figure 4(a). At this checkpoint, the distribution of co -

the cost of the best solution that will have been found if the run is completed - can
be approximated by the normal distribution N[c°00 - tt°°, o-'0]. This distribution,
represented in Fig. 4(a), suggests that, if continued, the current run has a good chance
of improving the current best solution, x. Suppose that based on this analysis, the
run continues until the next checkpoint, T = 50, and that the best solution found by
the run when it reaches that temperature is A'. At this point, a new distribution of c6
can be computed to check how the run is doing. This distribution, N[c'0 - "o, 05o] is
shown in Figure 4(b). It appears much less promising than the one at T = 100. Now,
the chances of improving the current best solution, x, appear remote: it probably does
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not make sense to continue this run.

C st

25000- Expected

Distribution
A

20000 __..

C100
C6

15000 -
, I . . . . Temp.

200 100 50 25 12.5 6.25

Cost 
(a)

25000-
2Expected

Distribution
A9

20000-
50

15000- x
, , I , , Temp.

200 100 50 25 12.5 6.25
(b)

Fig. 4 Expected Cost Improvement Distributions at T=100 and T=50.

Formally, when the (n + 1)-st run reaches a checkpoint temperature t, a cutoff

criterion is used to determine whether or not to continue this run. In the study reported
in Section 6, we use a cutoff criterion of the form:

(Ct 1 -li
( - r n) _X > threshold

n

where xn is the cost of the best solution found during the previous n runs and threshold

is a threshold value. If the inequality holds, the current run is abandoned. For example,
if threshold = 3 (the value used in our experiments) and the cutoff inequality holds at

a given checkpoint temperature t, the probability of improving x" by continuing the

run below t is expected to be less than 1% [2].
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5 Three Restart Criteria

Whenever a run is completed or abandoned, two options are available: either start a
fresh new annealing run or, instead, restart an earlier (promising) run, using a different
sequence of random numbers ("reannealing"). In total, if reannealing is constrained
to start from one of the checkpoint temperatures, there are up to n • ICI + 1 possible
options, where n is the number of earlier runs and ICI the number of checkpoints in
set C. Below, we describe three "restart criteria" that aim at selecting among these
options so as to maximize the chances of quickly converging to a near-optimal solution.

5.1 Maximum Cost Reduction Rate Criterion

When considering several points from which to restart search, two factors need to
be taken into account: (1) the likelihood that restarting search from a given point
will lead to an improvement of the current best solution and (2) the time that it
will take to complete a run from that point. Restarting from a low temperature will
generally bring about moderate solution improvements, if any, while requiring little
CPU time. Starting fresh new runs or restarting from higher temperatures can lead
to more significant improvements, though less consistently and at the cost of more
CPU time. In general, the cost improvements that can be expected from different
temperatures will vary from one problem to another, as illustrated in Figure 3 (and
as formalized by ECID distributions).

A natural restart criterion is one that picks the restart point expected to maximize
the rate at which the cost of the current best solution will improve. For each restart
candidate Ok (fresh annealing or reannealing), this can be approximated as the ex-
pected cost reduction (in the best solution), if search is restarted from Ok, divided by
the expected CPU time required to complete a run from that restart point. Below, we
use R(Ok) to denote this approximation of the expected cost reduction rate, if search
is restarted from Ok:

R(Ok) = expect ed-reduction(Ok)
expected-CPU(Ok)

where expected-reduction(Ok) is the expected cost reduction at the end of a run start-
ing from Ok and expected-CPU(Ok) is the CPU time that this run is expected to
require. expected-CPU(Ok) can be approximated as the average time required to
complete earier runs from Ok's temperature. expected-reduction(Ok) can be evaluated
using ECID distributions, as detailed below.

Given a reannealing point Ok at checkpoint temperature t and n earlier SA runs
completed from t or above, expected-reduction(Ok) can be approximated as:

expected-reduction(Ok) J= {Plk(x) (xn - x)}dx
LB

where P'k(x) is the density function of the normal distribution N[ck -- tfn, Utn], Ck is the
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cost of Ok's best solution1, xn is the cost of the best solution obtained over the first n
runs, and LB is a lower-bound on the optimal solution 2

Similarly, if Ok is a fresh SA run, expected-reduction(Ok) can be approximated as:

expected-reduction(Ok) = {Pn(x) . (x. - x)}dx
LB

where Pn(x) is the density function of the normal distribution N[,D, go], with

:72 0 _yfro
0 : -=1 Ci 0 Z= t ni

71 n-1

5.2 Randomized Criterion

One possible problem with the above criterion is its high sensitivity to possible inac-
curacies in approximations of ECID distributions. This can be a problem when the
number of earlier runs is still small. When inaccurate ECID distributions lead the
criterion to choose a poor restart point, the procedure may take a long time before it
improves the quality of the current best solution. In the meantime, it may keep on
coming back to the same poor restart point. For this reason, it is tempting to use
a randomized version of the criterion. One such variation involves randomly picking
from a set of promising restart points, H = {0 1 JR(0 1) > f . Max{R(Ok)}}, while
assuming that each element in H has the same probability, 1/1Hj, of being selected. 1•
is a constant whose value is between 0 and 1.

5.3 Hybrid Criterion

A third alternative involves keeping some level of stochasticity in the restart crite-
rion, while ensuring that more promising restart points have a higher chance of being
selected. This is done by selecting restart points in H according to a Boltzmann dis-
tribution that assigns to each element 01 E H a probability

p() = exp(R(OI))

EOkEH exp(R(Ok)/r))

Here, T is a positive constant. If T is very large, this method becomes equivalent to
the randomized criterion described in subsection 5.2. Ifr -_ 0, this criterion becomes
similar to the criterion of subsection 5.1. A similar distribution is used in the Q-
learning algorithm described in [21].

'To be consistent, if Ok correponds to the i-th SA run, Ck = cý, as defined in Section 3.
21n the experiments reported in this paper, LB was simply set to 0.
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6 Performance Evaluation

6.1 The Job Shop Scheduling Problem with Tardiness and Inventory Costs

To evaluate performance of our cutoff and restart criteria, we consider a set of complex
job shop scheduling problems first introduced in [18]. The problems assume a factory,
in which a set of jobs, J = {jlj 2 ,"" j ,jn}, has to be scheduled on a set of resources,
RES = {R 1, R2,.., Rr}. Each job requires performing a set of operations 0 =
{O, O,-... O1, } and, ideally, should be completed by a given due date, ddl, for delivery
to a customer. Precedence constraints specify a complete order in which operations in
each job have to be performed. By convention, it is assumed that operation Oý has
to be completed before operation 0ý+l can start (i = 1, 2,. n - 1). Each operation
OU has a deterministic duration duý and requires a resource k E RES. Resources
cannot be assigned to more than one operation at a time. The problem is to find a
feasible schedule that minimizes the sum of tardiness and inventory costs of all the
jobs ("Just-In-Time" objective). This problem is known to be NP-complete [18] and
is representative of a large number of actual factory scheduling problems where the
objective is to meet customer demand in a timely yet cost effective manner. Additional
details on this model can be found in [18].

Experimental results reported below suggest that a good neighborhood function for
this problem can be obtained by randomly applying one of the following three operators
to the current schedule3:

"* SHIFT-RIGHT: randomly select a "right-shiftable" operation and increase its
start time by one time unit4 .

"* SHIFT-LEFT (mirror image of SHIFT-RIGHT): randomly select a "left-shiftable"
operation and decrease its start time by one time unit.

" EXCHANGE: randomly select a pair of adjacent operations on a given resource
and permute the order in which they are processed by that resource. Specifically,
given two consecutive operations, A and B on a resource R, with A preceding B
in the current solution, the exchange operator sets the new start time of B to
the old start time of A and the new end time of A to the old end time of B '.

In our experiments, the probability of picking the EXCHANGE operator was empiri-
cally set to 3/7 while the probabilities of picking SHIFT-RIGHT or SHIFT-LEFT were

31n the scheduling jargon, the Just-In-Time objective considered in this study is known to be
irregular[10]. Prior applications of SA to job shop scheduling have only considered regular objectives
such as Minimum Makespan. It can be shown that the neighborhoods used in these earlier studies
are not adequate to deal with irregular objectives such as the one considered here [16].

"An operation is said to be "right(left)-shiftable" if its start time can be increased (decreased) by
one time unit without overlapping with another operation.

5In our implementation, exchanging two operations is allowed even if a precedence constraint is
violated in the process. Precedence constraint violations are handled using large artificial costs that
force the SA procedure to quickly get rid of them [16].
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each set to 2/7. Additionally, the values of parameters in the SA procedure (see Figure
1) were set as follows: T0 = 700, T1 = 6.25, N = 200, 000 and a = 0.85.

The performance of this SA procedure has been evaluated in a comparison against
39 combinations of well-regarded dispatch rules and release policies previously used to
assess the performance of the Sched-Star [11] and Micro-Boss [18, 17] systems on a set
of 40 benchmark problems similar to the ones described in [18]. The 40 benchmarks
consisted of 8 problem sets obtained by adjusting three parameters to cover a wide range
of scheduling condition: an average due date parameter (tight versus loose average due
date), a due date range parameter (narrow versus wide range of due dates), and a
parameter controlling the number of major bottlenecks (in this case one or two). For
each parameter combination, a set of 5 scheduling problems was randomly generated,
thereby resulting in a total of 40 problems. Each problem involved 20 jobs and 5
resources for a total of 100 operations. On average, when compared against the best
solution found on each problem by the 39 combinations of dispatch rules and release
policies, SA reduced schedule cost by 15% (average over 10 SA runs). When comparing
the best solution obtained in 10 SA runs against the best solution obtained on each
problem by the 39 combinations of dispatch rules and release policies, SA produced
schedules that were 34% better. However, while running all 39 combinations of dispatch
rules and release policies takes a few CPU seconds on a problem, a single SA run takes
about 3 minutes on a DECstation 5000/200 running C. Additional details on these
experiments can be found in [163.

6.2 Empirical Evaluation of Cutoff and Restart Criteria

We now turn to the evaluation of the cutoff and restart criteria presented in this paper
and compare the performance of five variations of the SA procedure presented in 6.1:

"* N-SA: regular SA, as described in 6.1 (no learning).

"* P-SA: SA with cutoff criterion.

"* B-SA: SA with cutoff and Maximum Cost Reduction Rate restart criteria.

"* R-SA: SA with cutoff and randomized restart criteria (fl = 0.5).

"* H-SA: SA with cutoff and hybrid restart criteria (P3 = 0.5 and r = 1).

When running P-SA, B-SA, R-SA, and H-SA, the cutoff and/or restart criteria were
only activated after 5 complete SA runs to allow for the construction of meaningful
ECID distributions. All four of these procedures used the same set of checkpoints,
C = {200, 100, 50, 25, 12.5}.

The five procedures were compared on the same 40 benchmark problems described
in subsection 6.16. Each SA procedure was run for 2 hours on each benchmark problem.

6At the present time, only a subset of the problems in each of the 8 problem sets have been

completed. Complete results will be presented in the final version of the paper.
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Furthermore, to eliminate possible noise effects, each two-hour experiment was repeated
a total of 15 times. The results presented here were obtained by averaging performance
of these 15 runs of each procedure on each problem.

Fig. 5 depicts the performance of the five SA procedures on a typical benchmark
problem. The first 15 minutes are not represented, as they correspond to the first 5
runs when the cutoff and restart criteria have not yet been activated.

cost

8500 0 P-SAB-SA
R-SA
H-SA

8000-

7500 3 , 0 , 1 Time (min.)
30 60 90 120

Fig. 5 Improvement of the best solution over time.

The figure shows that throughout its run, N-SA was dominated by the other four
procedures. It also indicates that both the cutoff criterion and the restart criteria
contributed to this performance improvement. Among the three restart criteria, H-
SA appears to perform best. Figure 5 further suggests that the restart criterion in
H-SA improves performance through the entire run, as the gap between H-SA and
N-SA widens over time. These observations are confirmed by results obtained on the
8 problem sets of the study, as depicted in Figure 6. Fig. 6(a) shows the average
cost reductions yielded by P-SA, B-SA, R-SA and H-SA over N-SA at the end of the
two-hour runs. Figure 6(b) gives the average reduction in the CPU time required by
each of these four procedures to find a solution of equal or better quality than the best
solution found by N-SA in two hours. It can be seen that H-SA requires between 30%
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and 70% less CPU time than N-SA.

Cost reduction (%) Speedup (%)

7.0

6.0 o P-SA
m B-SA o P-SA

A R-SA 80- a B-SA
5.0. H-SA A R-SA

& H-SA

4.0 60"

3.0

40

2.0

20-

1.0

0.0....................... 0.0 mm

1 2 3 4 5 6 7 8 1 2 3 4 5 6 78

Problem Set Problem Set

(a) Cost reduction (computation time: fixed) (b) Speedup (cost: fixed)

Fig. 6 Empirical comparison.

A finer analysis indicates that performance improvements produced by our cutoff
and restart criteria increase as one requires higher quality solutions. Figure 7, compares
the average CPU time of each of the five procedures as the required quality of solutions
is increased. While all five procedures take about as long to find a solution with cost
below 9000 or 8800, the time required to find a solution below 8500 varies significantly
(e.g. H-SA can find such a solution in 3500 seconds while N-SA requires close to 10,000
seconds).

Time (sec)
10000-

5000 • Cost = 8400

Cost = 8500
___ ___ ---- Cost = 8600

______ :Cost = 8800
0.0 LCost = 9000

N-SA P-SA B-SA R-SA H-SA
Fig. 7 Speedups as a function of required solution quality.

As already indicated in Section 5, the difference in performance between B-SA, R-
SA and H-SA suggests that a deterministic use of ECID distributions to decide where
to restart search can be tricky, as these distributions may not be accurate, especially
when only a small number of runs has been completed. By injecting non-determinism
in the restart criterion, R-SA and H-SA ensure that the procedure will not always
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restart from the same point. The procedure is forced to sample a wider area and in
the process gets a chance to refine ECID distributions. From this point of view, B-SA
is a procedure that places more emphasis on using existing knowledge of the search
space than acquiring new one, while R-SA places more emphasis on learning and less
on exploiting already acquired information. H-SA appears to provide the best balance
between these two requirements.

Finally, it should be obvious that the CPU time and memory overheads of our
cutoff and restart criteria are very moderate. All in all, in our experiments, the CPU
time required to learn ECID distributions and apply the cutoff and restart criteria
was well under 1% of total CPU time.

7 Summary

In summary, we have developed a mechanism that learns to recognize (un)promising
SA runs by refining "Expected Cost Improvement Distributions" (ECIDs) over mul-
tiple SA runs, and have developed search cutoff and restart criteria that exploit these
distributions. These mechanisms can be applied to any SA procedure and have been
validated on complex job shop scheduling problems with tardiness and inventory costs,
where they have been shown to dramatically reduce the computational requirements
of a competitive SA procedure. Experiments presented in this paper further indicate
that the closer one seeks to be to the optimum, the larger the speedups.
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